Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The first phosphite complex of a metalloporphyrin

Orde Q. Munro* and Greville L. Camp

School of Chemical and Physical Sciences, University of Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
Correspondence e-mail: munroo@nu.ac.za

Received 27 January 2003
Accepted 25 February 2003
Online 21 March 2003
(Diphenyl phosphite- κO)(5,10,15,20-tetraphenylporphyrinato$\kappa^{4} N$)manganese(III) hexafluoroantimonate(V), $\left[\mathrm{Mn}\left(\mathrm{C}_{44} \mathrm{H}_{28^{-}}\right.\right.$ $\left.\left.\mathrm{N}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{P}\right)\right]\left(\mathrm{SbF}_{6}\right)$, is the first example of a structurally characterized diaryl or dialkyl phosphite complex of a metalporphyrin ion. The axial phosphite ligand binds to the $\mathrm{Mn}^{\text {III }}$ ion via the $\mathrm{P}=\mathrm{O} \mathrm{O}$ atom, affording a nominally fivecoordinate complex with an $\mathrm{Mn}-\mathrm{O}$ distance of 2.120 (4) \AA. The mean porphyrin $\mathrm{Mn}-\mathrm{N}$ distance is 2.000 (4) \AA and the $\mathrm{Mn}^{\mathrm{III}}$ ion is displaced from the 24 -atom porphyrin mean plane by 0.1548 (13) A towards the axial O atom. The porphyrin adopts a marked saddle conformation, with a small domed component. The saddle distortion of the porphyrin ligand reflects the tight back-to-back dimers formed in the lattice by pairs of neighboring cations. The 'non-covalent' dimers in the lattice exhibit an unusual (weak) η^{2}-type coordination of a pyrrole $\mathrm{C}=\mathrm{C}$ bond from a neighboring molecule, with $\mathrm{Mn}^{\mathrm{III}}$. . . C distances of 3.697 (5) and 3.537 (5) \AA.

Comment

During the course of our work on the synthesis and characterization of novel complexes of metalloporphyrins (Munro et al., 1999, 2001), we isolated crystals of a novel $\mathrm{Mn}^{\mathrm{III}}-$ porphyrin complex, (I), from a reaction intended to produce the bis(triphenyl phosphite) derivative $\left[\mathrm{Mn}(\mathrm{TPP})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]-$ $\left(\mathrm{SbF}_{6}\right)$ (where TPP is 5,10,15,20-tetraphenylporphyrinate and THF is tetrahydrofuran):

$$
\begin{aligned}
{\left[\mathrm{Mn}(\mathrm{TPP})(\mathrm{THF})_{2}\right]\left(\mathrm{SbF}_{6}\right)+\operatorname{excess} \mathrm{P}(\mathrm{OPh})_{3} \rightarrow } \\
{\left[\mathrm{Mn}(\mathrm{TPP})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]\left(\mathrm{SbF}_{6}\right)+2 \mathrm{THF} . }
\end{aligned}
$$

Since we were unable to cleanly isolate the desired reaction product, which had a ${ }^{31} \mathrm{P}$ NMR signal at 116.91 p.p.m. in CDCl_{3} solution, and instead obtained crystals of the diphenyl phosphite derivative, we analyzed the commercial source of triphenyl phosphite by GC-MS and found that it contained $c a$ 1% diphenyl phosphite. Evidently, this contaminant in the
commercial reagent was present in a sufficiently large quantity under the reaction conditions to react with the $\mathrm{Mn}^{\mathrm{III}}$ porphyrin according to:

$$
\begin{gathered}
{\left[\mathrm{Mn}(\mathrm{TPP})(\mathrm{THF})_{2}\right]\left(\mathrm{SbF}_{6}\right)+\mathrm{O}=\mathrm{PH}(\mathrm{OPh})_{2} \rightarrow} \\
{\left[\mathrm{Mn}(\mathrm{TPP})\left\{(\mathrm{O}) \mathrm{PH}(\mathrm{OPh})_{2}\right\}\right]\left(\mathrm{SbF}_{6}\right)+2 \mathrm{THF} .}
\end{gathered}
$$

This unexpected behavior in the presence of a large excess of triphenyl phosphite clearly reflects the oxophilic nature of $\mathrm{Mn}^{\text {III }}$ (Scheidt, 2000) and the fact that diphenyl phosphite is sterically less hindered than triphenyl phosphite and thus, we presume, a ligand with an intrinsically higher affinity constant for a metalloporphyrin.

(I)

The room-temperature X-ray crystal structure of (I) is shown in Fig. 1. The P-bound phosphite H atom (H71) was located in a difference Fourier map and was refined isotropically. There is a well defined, though relatively weak, hydrogen bond [2.64 (5) \AA] between this H atom and an F atom (F2) of the $\mathrm{SbF}_{6}{ }^{-}$counter-ion; the $\mathrm{P}-\mathrm{H} 71 \cdots \mathrm{~F} 2$ angle is 167 (3) ${ }^{\circ}$. As discussed below, the porphyrin conformation is clearly nonplanar (saddle distortion) and the $\mathrm{Mn}^{\mathrm{III}}$ ion is located 0.1548 (13) \AA above the 24 -atom porphyrin mean plane (Fig. 2) to give a nominally square-pyramidal coordination geometry. The $\mathrm{Mn}-\mathrm{O} 1$ distance is 2.120 (4) \AA and the mean porphyrin $\mathrm{Mn}-\mathrm{N}$ distance is 2.000 (4) \AA. The trans $\mathrm{N}-\mathrm{Mn}-$ N angles average $170.0(3)^{\circ}$ (Table 1), a value which is consistent with the square-pyramidal coordination geometry of the metal ion. The coordination group is, on the whole, similar in structure to that reported for $\left[\mathrm{Mn}(\mathrm{TPP})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-$ $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (Williamson \& Hill, 1986), in which the $\mathrm{Mn}-\mathrm{O}$ and porphyrin $\mathrm{Mn}-\mathrm{N}$ distances are 2.105 (4) and 1.995 (7) \AA, respectively, and the metal ion displacement is 0.17 Å.

The porphyrin core geometry and averaged chemically unique distances and angles of (I) are shown in Fig. 2. As noted above, the porphyrin conformation is predominantly of the saddle type (Scheidt \& Lee, 1987). However, the out-ofplane location of the $\mathrm{Mn}^{\text {III }}$ ion results in an admixture of a classical saddle conformation (pairs of pyrrole β-C atoms alternately displaced above and below the porphyrin mean plane) and a domed conformation that commonly results from five-coordination in metalloporphyrins (Scheidt, 2000). The maximum out-of-plane displacement is shown by the pyrrole
β-C atom C202 [0.400 (6) \AA A. The mean absolute perpendicular displacements of the porphyrin $\mathrm{N}, \alpha-, \beta$-, and meso- C atoms are 0.03 (3), 0.13 (4), 0.35 (4), and 0.07 (5) \AA, respectively.

The saddle distortion of the porphyrin macrocycle reflects the conformational adjustments that are required to accommodate the canted meso-phenyl groups (Munro et al., 1992), which are clearly tipped towards the plane of the pyrrole rings. More specifically, the dihedral angles between the planes of the four meso-phenyl groups and the 24 -atom porphyrin mean

Figure 1
Labeled ORTEP-3 (Farrugia, 1997) view of (I) (30\% probability displacement ellipsoids), showing the hydrogen bond between atoms F2 and H71 (all other H atoms have been omitted for clarity) and the overall molecular conformation. Only the major disordered component is shown.

Figure 2

Formal diagram of (I), showing the perpendicular displacements (in units of $0.01 \AA$) of each atom from the 24 -atom porphyrin mean plane, as well as the average structural parameters for each chemically unique class of bond and angle in the porphyrin macrocycle.
plane are $53.72(13)^{\circ}(\mathrm{C} 11-\mathrm{C} 16$, phenyl group attached to C301), $55.14(15)^{\circ}$ (C21-C26, phenyl attached to C302), 82.2 (4) ${ }^{\circ}$ (C31-C36, phenyl attached to C303), and $59.96(19)^{\circ}$ (C41-C46, phenyl attached to C304), respectively. These acute dihedral angles are consistent with the fact that the porphyrin

Figure 3
Selectively labeled view (top) of (I) (30% probability displacement ellipsoids), showing a symmetry-related cation pair [symmetry code: (i) $1-x, 1-y, 1-z]$ and two of the significant short contacts between the dimer units. A perspective view of the unit cell of (I) (bottom) illustrates the interaction in relation to the remaining unit-cell contents. H atoms have been omitted for clarity.
cations pack as rather tight (formally non-covalent) dimers in a back-to-back fashion and that rotation of the meso-phenyl groups facilitates the close approach of the two porphyrin rings. This is illustrated in Fig. 3, which shows that the constituents of each dimer are related by a center of inversion between the pair of cations.

The canted phenyl groups appended to porphyrin meso-C atoms C301 and C302 apparently push the pyrrole ring containing atom N 2 below the porphyrin mean plane. However, there are actually two interesting types of interaction that directly or indirectly involve this particular pyrrole ring. The first is steric strain (van der Waals repulsion) with respect to the meso-phenyl groups appended to C301 and C302, as noted above. One consequence of these interactions is that a 'pocket' is created that partially accommodates the $\mathrm{SbF}_{6}{ }^{-}$ion. Moreover, in addition to the $\mathrm{H} 71 \cdots \mathrm{~F} 2$ hydrogen bond, several other moderate-to-weak hydrogen bonds involving the F atoms evidently stabilize the location of the anion at this site. These include H52‥F1 ($2.57 \AA$; C52$\left.\mathrm{H} 52 \cdots \mathrm{~F} 1=147^{\circ}\right)$, H $42^{\mathrm{i}} \cdots \mathrm{F} 2\left(2.67 \mathrm{~A} ; \mathrm{C} 42^{\mathrm{i}}-\mathrm{H} 42^{\mathrm{i}} \cdots \mathrm{F} 2=\right.$ $\left.136^{\circ}\right)$, H22 $\cdots \mathrm{F} 3\left(2.53 \AA\right.$; C22-H22 $\left.\cdots \mathrm{F} 3=155^{\circ}\right)$, H25 $5^{\mathrm{ii}} \cdots \mathrm{F} 4$ $\left(2.60 \AA\right.$ A $\mathrm{C}_{2} 5^{\mathrm{ii}}-\mathrm{H} 25^{\mathrm{ii}} \ldots \mathrm{F} 4=142^{\circ}$), and $\mathrm{H} 26^{\mathrm{ii}} \cdots \mathrm{F} 5(2.58 \AA$; $\mathrm{C} 26^{\mathrm{ii}}-\mathrm{H} 26^{\mathrm{ii}} \cdots \mathrm{F} 5=146^{\circ}$) [symmetry codes: (i) $-x, 1-y$, $1-z$; (ii) $\left.x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z\right]$. We surmise that these interactions may collectively dictate the orientation of the axial diphenyl phosphite ligand, which exhibits $\mathrm{N} 3-\mathrm{Mn}-\mathrm{O} 1-\mathrm{P}$ and $\mathrm{Mn}-\mathrm{O} 1-\mathrm{P}-\mathrm{H} 71$ torsion angles of 22.2 (5) and $93(2)^{\circ}$, respectively. The H22 $\cdots \mathrm{F} 3$ hydrogen bond probably also accounts, at least in part, for the orientation of the phenyl group appended to C302.

The second type of interaction with the N 2 pyrrole ring involves the $\mathrm{Mn}^{\mathrm{III}}$ ion of a neighboring cation. In fact, compound (I) is best regarded as being pseudo-six-coordinate, since the $\mathrm{Mn}^{\text {III }}$ ion of one cation makes two short contacts with a pair of C atoms in a neighboring cation, with $\mathrm{Mn} \cdots \mathrm{C} 103^{\text {iii }}$ and $\mathrm{Mn} \cdots \mathrm{C} 203^{\text {iii }}$ [symmetry code: (iii) $1-x, 1-y, 1-z$] distances of 3.697 (5) and 3.537 (5) \AA, respectively. These contact distances are considerably shorter than the sum of the van der Waals radii of the Mn and C atoms concerned ($3.86 \AA$). Given that C103 and C203 formally belong to a pyrrole $\mathrm{C}=\mathrm{C}$ bond, it is not unreasonable to suggest that there is a weakly coordinated alkene-like ligand (η^{2}-binding mode) occupying the sixth coordination site in (I). Finally, we conclude that it is perhaps the latter interaction that best explains the dimeric structure of (I) in the solid state and thus both the canted meso-phenyl groups and the resulting saddle conformation of the porphyrin ring.

Experimental

General experimental methods were as described previously (Munro et al., 2001). Triphenyl phosphite (Aldrich) was stored under nitrogen but no further steps to purify the commercial reagent were undertaken. H_{2} TPP ($5,10,15,20$-tetraphenylporphyrin) was synthesized according to published procedures (Barnett et al., 1975). [Mn(TPP)Cl] was prepared according to the method of Adler et al. (1970). To $[\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}](150 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(88 \mathrm{mg}, 0.26 \mathrm{mmol} ;$

Aldrich) in a 250 ml Schlenk tube under nitrogen was added freshly distilled tetrahydrofuran (50 ml , THF). The solution was stirred for ca 12 h at room temperature. The THF was then removed in vacuo and the green-brown solid obtained redissolved in dichloromethane $(50 \mathrm{ml})$. The solution was filtered into a 250 ml Schlenk tube containing triphenyl phosphite ($1.1 \mathrm{ml}, 4.3 \mathrm{mmol}$) and the resulting solution left to stir at room temperature for 10 min . The red-brown solution was then transferred into 12 Schlenk tubes in ca 4 ml aliquots and layered with hexane. X-ray quality crystals were observed after 4 d . The yield was not calculated as the bulk material was not pure. No further analysis beyond an X-ray structure determination was attempted.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{P}\right)\right]\left(\mathrm{SbF}_{6}\right)$	$D_{x}=1.525 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=1137.57$ Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 25
$a=13.719(2) \AA$	reflections
$b=20.817(3) \AA$	$\theta=2-12^{\circ}$
$c=17.390(2) \AA$	$\mu=0.91 \mathrm{~mm}^{-1}$
$\beta=94.132(11)^{\circ}$	$T=296(2) \mathrm{K}$
$V=4953.7(12) \AA^{3}$	Cube, purple-black
$Z=4$	$0.5 \times 0.5 \times 0.5 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4

diffractometer $\omega-2 \theta$ scans
10668 measured reflections 8694 independent reflections 6205 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-1 \rightarrow 16 \\
& k=-1 \rightarrow 24 \\
& l=-20 \rightarrow 20 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: } 4 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1251 P)^{2} \\
&+2.2623 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.98 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.61 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Mn}-\mathrm{N} 1$	1.995 (4)	$\mathrm{P}-\mathrm{O} 1$	1.443 (4)
$\mathrm{Mn}-\mathrm{N} 3$	2.000 (4)	$\mathrm{P}-\mathrm{O} 2$	1.535 (6)
$\mathrm{Mn}-\mathrm{N} 2$	2.003 (4)	$\mathrm{P}-\mathrm{O} 3$	1.560 (5)
$\mathrm{Mn}-\mathrm{N} 4$	2.003 (4)	O2-C51	1.451 (6)
$\mathrm{Mn}-\mathrm{O} 1$	2.120 (4)	O3-C61	1.390 (6)
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 3$	171.69 (18)	$\mathrm{N} 2-\mathrm{Mn}-\mathrm{O} 1$	93.41 (17)
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 2$	89.60 (16)	$\mathrm{N} 4-\mathrm{Mn}-\mathrm{O} 1$	98.38 (18)
$\mathrm{N} 3-\mathrm{Mn}-\mathrm{N} 2$	89.20 (16)	$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	106.3 (3)
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 4$	89.75 (16)	$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 3$	115.4 (3)
N3-Mn-N4	89.75 (17)	$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 3$	109.2 (3)
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 4$	168.21 (18)	$\mathrm{P}-\mathrm{O} 1-\mathrm{Mn}$	146.7 (3)
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{O} 1$	92.51 (17)	C51-O2-P	124.6 (5)
N3-Mn-O1	95.76 (17)	C61-O3-P	123.0 (4)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 1-\mathrm{C} 101$	-86.7 (4)	$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 2-\mathrm{C} 51$	-44.9 (7)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 1-\mathrm{C} 102$	74.6 (4)	$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 3-\mathrm{C} 61$	51.4 (6)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 2-\mathrm{C} 103$	-86.4 (4)	$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 3-\mathrm{C} 61$	-68.2 (6)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 2-\mathrm{C} 104$	92.0 (4)	C102-C301-C11-C16	-60.6 (7)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 3-\mathrm{C} 106$	82.8 (5)	C103-C301-C11-C12	-60.0 (7)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 3-\mathrm{C} 105$	-78.5 (4)	C105-C302-C21-C26	62.7 (7)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 4-\mathrm{C} 107$	-90.5 (5)	C104-C302-C21-C22	59.3 (7)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 4-\mathrm{C} 108$	90.8 (5)	C107-C303-C31-C32	78.6 (9)
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1-\mathrm{Mn}$	-15.3 (6)	C106-C303-C31-C36	74.2 (9)
$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 1-\mathrm{Mn}$	-136.5 (5)	C108-C304-C41-C42	64.4 (8)
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{O} 1-\mathrm{P}$	-157.2 (5)	C101-C304-C41-C46	65.7 (7)
$\mathrm{N} 3-\mathrm{Mn}-\mathrm{O} 1-\mathrm{P}$	22.1 (5)	$\mathrm{P}-\mathrm{O} 2-\mathrm{C} 51-\mathrm{C} 52$	-59.8 (8)
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{O} 1-\mathrm{P}$	-67.4 (5)	$\mathrm{P}-\mathrm{O} 2-\mathrm{C} 51-\mathrm{C} 56$	118.5 (6)
$\mathrm{N} 4-\mathrm{Mn}-\mathrm{O} 1-\mathrm{P}$	112.7 (5)	$\mathrm{P}-\mathrm{O} 3-\mathrm{C} 61-\mathrm{C} 62$	-67.3 (7)
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2-\mathrm{C} 51$	-170.0 (6)	P-O3-C61-C66	117.3 (5)

ring positions for this group using standard rigid-group constraints (SHELXL97 AFIX 66 instruction) were not successful since the $\mathrm{O} 2-\mathrm{C} 51-\mathrm{C} 52$ angle became chemically unfeasible (94.6°) for one of the rings. Furthermore, attempts to restrain this angle to 120° lead to an unstable refinement. The C51-C56 phenyl ring was therefore modeled as a single rigid group with the same restraints as applied to the disordered phenyl rings appended to C303. Lastly, a rigid group
refinement for the phenyl ring attached to O 3 (C61-C66) was used to prevent the $\mathrm{C}-\mathrm{C}$ bonds from becoming unreasonably short.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the University of Natal Research Fund and the National Research Foundation (Pretoria) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1160). Services for accessing these data are described at the back of the journal.

References

Adler, A. D., Longo, F. R., Kampas, F. \& Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2445.
Barnett, G. H., Hudson, M. F. \& Smith, K. M. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 1401-1403.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Munro, O. Q., Bradley, J. C., Hancock, R. D., Marques, H. M., Marsicano, F. \& Wade, P. W. (1992). J. Am. Chem. Soc. 114, 7218-7230.
Munro, O. Q., Madlala, P. S., Warby, R. A. F., Seda, T. S. \& Hearne, G. (1999). Inorg. Chem. 38, 4724-4736.
Munro, O. Q., Shabalala, S. C. \& Brown, N. J. (2001). Inorg. Chem. 40, $3303-$ 3317.

Scheidt, W. R. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, K. M. Smith \& R. Guilard, pp. 49-112. New York: Academic Press. Scheidt, W. R. \& Lee, Y. J. (1987). Struct. Bonding (Berlin), 64, 1-70.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Williamson, M. M. \& Hill, C. L. (1986). Inorg. Chem. 25, 4668-4671.

